If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+(9a)^2=65^2
We move all terms to the left:
a^2+(9a)^2-(65^2)=0
We add all the numbers together, and all the variables
10a^2-4225=0
a = 10; b = 0; c = -4225;
Δ = b2-4ac
Δ = 02-4·10·(-4225)
Δ = 169000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{169000}=\sqrt{16900*10}=\sqrt{16900}*\sqrt{10}=130\sqrt{10}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-130\sqrt{10}}{2*10}=\frac{0-130\sqrt{10}}{20} =-\frac{130\sqrt{10}}{20} =-\frac{13\sqrt{10}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+130\sqrt{10}}{2*10}=\frac{0+130\sqrt{10}}{20} =\frac{130\sqrt{10}}{20} =\frac{13\sqrt{10}}{2} $
| n/5+8=21 | | Y-5x=-45 | | 7a+12a+7a+10a=360 | | M•10+m•23=138 | | -6x-7=-2(3x-5)+5x | | 2.6x-15.02=3.7 | | 3(7r-2)=21r=6 | | 5x-3=45x+21 | | 22=4+6a | | 20^x=100 | | 3x+5=+x+19 | | 22+15m=18+-7m | | 2r+6=5r/2 | | 4(5^x)=100 | | x+67=56 | | 4q=-18+7q | | -5(3m+6)=-3(4m-2)+2 | | 3+6x+6=-9 | | 8x(24)=432 | | 1/4x=125 | | 3t-13=-2 | | 1/(x-2)+4=12 | | 5y-25=60 | | 2n=63 | | 1/4(x-2+4)=12 | | 2(6x-1)=10x+4 | | C=24,999+500u | | 15m+22=7-m+18 | | -7b-15=19-19-2b | | 2600-x=1200+3(X-300) | | 3(2x+3)^2=45 | | -19-4c=17 |